A BILINEAR RUBIO DE FRANCIA INEQUALITY FOR ARBITRARY SQUARES

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Proof of a conjecture of José L . Rubio de Francia

Given a compact connected abelian group G, its dual group Γ can be ordered (in a non-canonical way) so that it becomes an ordered group. It is known that, for any such ordering on Γ and p in the range 1 < p < ∞, the characteristic function χI of an interval I in Γ is a p−multiplier with a uniform bound (independent of I) on the corresponding operator SI on Lp(G). In this note it is shown that, ...

متن کامل

Dedicated to the Memory of Jose Luis Rubio De Francia

In this paperwe prove that the /~.,-cube can be (1 + s)-embedded into any 1 -subsyntmetrie C(s>n.dimensional normed space. Marcus and Pisier in [5]iniciated tite study of tite geometry ob finite metric spaces. Bourgain, Milman and Wolbson introduced a new notion of metnc type and developed tite non-linear titeory of Banacit spaces (see [2]and [7]). AII titese themes have been studied more inten...

متن کامل

Rubio de Francia’s Littlewood-Paley inequality for operator-valued functions

We prove Rubio de Francia’s Littlewood-Paley inequality for arbitrary disjoint intervals in the noncommutative setting, i.e. for functions with values in noncommutative L-spaces. As applications, we get sufficient conditions in terms of q-variation for the boundedness of Schur multipliers on Schatten classes.

متن کامل

Weighted Weak-type (1, 1) Estimates via Rubio De Francia Extrapolation

The classical Rubio de Francia extrapolation result asserts that if an operator T : L0(u) → Lp0,∞(u) is bounded for some p0 > 1 and every u ∈ Ap0 , then, for every 1 < p < ∞ and every u ∈ Ap, T : L(u) → Lp,∞(u) is bounded. However, there are examples showing that it is not possible to extrapolate to the end-point p = 1. In this paper we shall prove that there exists a class of weights, slightly...

متن کامل

Issues related to Rubio de Francia’s Littlewood–Paley inequality

Let Sω f = ∫ ω f̂(ξ)e dξ be the Fourier projection operator to an interval ω in the real line. Rubio de Francia’s Littlewood–Paley inequality (Rubio de Francia, 1985) states that for any collection of disjoint intervals Ω, we have ∥∥∥∥ [∑ ω∈Ω |Sω f | 1/2∥∥∥∥ p ‖f‖p, 2 ≤ p < ∞. We survey developments related to this inequality, including the higher dimensional case, and consequences for multiplie...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Forum of Mathematics, Sigma

سال: 2016

ISSN: 2050-5094

DOI: 10.1017/fms.2016.21